modems added to the ice floe

I added a couple telebit trailblazers to the ice floe a couple days ago, and tonight my US Robotics courier HST.

My father purchased a Kyocera 1200 bps modem for our family’s Leading Edge model D, with the hope that my mom could use it for her transcription and word-processing business. I used it to call BBSes. It took at least a year before I figured out how to get file transfers working with the included Microsoft Access comm program. (Not Microsoft Access the database — Access the comm program!) I downloaded Procomm with the Xmodem-checksum protocol, then later Telix (with Zmodem).

I saved my paper route money to buy a 2400bps modem. I did ANSI. I ran a BBS. I saved more paper route money and got at 14.4k courier HST through a local sysop of a large multi-line BBS. In the early 90s it was cheaper for me to call across the country in the middle of the night with a budget long-distance provider than to call to the more remote areas of my own area code, but that’s the subject of another post…

When I arrived in college, the sysadmin there knew I had run a BBS, beckoned me to the the sub-basement, and handed me a Xylogics terminal server. “You can make this work, right?” I first configured it to replace the old Cisco STS-10, providing direct text logins for students and alums. I opened up PPP connections a couple months later, and wrote an awk script to parse the log files and identify freeloaders. As a staff member, I of course never showed up on the freeloader list, even though I left my connection up 24/7, phone line connection permitting.

During a year break from college, I was employed at a large regional ISP as a system operator, junior to the sysadmins. I did the grunt-work of hard-resetting (yanking and re-seating) failing modems from the 800+ lines in our local POP, and directing our field guy to busy-out or replace modems that appeared to be broken at the frame-relay-connected remote POPs.

A couple years later I replaced my nailed-up V34 modem with a DSL connection, first CAP and later DMT. When the telco started interfering with their own DSL connections and the combination of video streaming and work-related VPN needs started outstripping DSL, I moved to a cablemodem.

I originally kept my modems with the intent of setting up a backup UUCP connection for my email, as I had provided others in college. Since moving jobs to corpoland, I no longer have control over a remote PSTN line, so can’t set up my own out-of-band UUCP connection. I no longer have a POTS line at home. I suspect that modems over VOIP do not fare well, although V.MOIP is supposed to address this. In any case, the sunset on modems designed to work over the PSTN has long since passed, and so it’s time to say goodbye.

I don’t even have another HST modem to dial in order to capture handshake audio, and a cursory search on the internet doesn’t reveal any such recordings. My HST has spent over a decade in a box, and the last time I fired it up, the NVRAM was completely shot, and it’s not like I have anywhere to dial anymore.

The option of simulating old tyme internet over a serial connection is always available by using a null modem cable. Latency will obviously be better, but it’s just a simulation. screeching handshake not included.

the kids have met spinning media

My children have met spinning media. I play games with them on my c64, so they know what floppy drives are. I play vinyl records for them. They have a small DVD collection of movies. Tonight we took apart a couple hard drives so I could show them the insides. They enjoy using screwdrivers.

First up was a full-height 1.6GB Seagate PA4E1B 5.25″ drive. We weren’t able to get the lid off, but they could see the drive arms and all the platters. Ten of them. Eighteen heads on the arm. (Later, with a hammer and screwdriver, I was able to get the lid off.)

We then moved to a 3.5″ 52MB Quantum Prodrive 52S. When the top of the drive came off, my daughter recognized the configuration of the head and arm over the platter. “It looks like a record,” she said. Two heads, and an optical detector for the tracks, rather than using servo tracks. I now wish I had fired it up and listened to it before disassembly, as I suspect it may have had a unique sound.

The largest drives I have now in my home datacenter are 3TB. MicroSD cards sold at the checkout lanes at my local supermarket can hold more data than the drives we disassembled in a fraction of the physical space, with orders of magnitude less power consumption. SSDs are catching up to spinning rust in capacity, and Intel’s recently announced non-volatile memory pushes densities even higher. It’s possible my kids will never have to delete data in their adult lives — data would get marked as trash, but would still technically available for retrieval “just in case” because the cost savings of actually reclaiming the space used by data will be negligible.

I had a Xerox 820-II CP/M machine with 8″ floppies that stored close to 1MB of data. My family had a PC with a 30MB hard drive, and I remember being in awe in the early 90s thinking about 1GB hard drives that cost around $1k. I bought a 179MB drive in high school with stipend money, and scrounged drives of various sizes throughout college. I don’t remember the first drive > 1GB that I owned — very few have survived. I vaguely recall a jump from hundreds of MB to tens of GB that happened in the early 2000s. All spinning media.

All slowly succumbing to mechanical wear-out, or more simply, obsolescence.